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Abstract: This  review  article  discusses  the  development  of  gallium  arsenide  (GaAs)-based  resonant  tunneling  diodes  (RTD)
since the 1970s. To the best of my knowledge, this article is the first review of GaAs RTD technology which covers different epi-
taxial-structure design, fabrication techniques, and characterizations for various application areas. It is expected that the details
presented here will help the readers to gain a perspective on the previous accomplishments, as well as have an outlook on the
current trends and future developments in GaAs RTD research.
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1.  Introduction

The  pioneering  work  of  Leo  Esaki  and  Raphael  Tsu[1−3]

has led resonant tunneling diode (RTD) to come into recogni-
tion.  Esaki,  during  his  PhD  days  (in  1958)  reported  on  a  new
diode (named the Esaki or tunnel diode) that exhibited nega-
tive  resistance  in  its  current–voltage  (I–V)  characteristic,  and
which  was  used  for  microwave  communications,  high-fre-
quency  amplifier,  logic  circuits,  and  oscillators[4−11].  Although
this diode was faster than the conventional diodes and transis-
tors, it was hard to use in control circuits, and was also expen-
sive.  In  1973,  Esaki  and  Tsu  reported  a  new  tunneling  phe-
nomenon  in  a  superlattice.  It  was  observed  from  the  com-
puted I–V characteristic  that  multibarrier  tunneling  model
would  provide  better  understanding  in  observing  the  trans-
port  mechanism  for  a  superlattice  having  limited  number  of
spatial  periods  or  a  short  mean  free  path.  A  year  later,  in
1974,  Chang  Tsu  and  Esaki  demonstrated  a  device  based  on
their previous collaborative work and theories—the RTD. RTD
is  a  semiconductor  device  that  utilizes  quantum  mechanical
tunneling to  transport  electrons  through a  thin  barrier  in  the
device.  The  tunneling  effect  occurs  when  the  energy  of  the
electron  is  less  than  the  height  of  the  energy  barrier,  which
allows  the  electron  to  pass  through  the  barrier  without  los-
ing  any  energy.  In  an  RTD,  the  tunneling  effect  is  enhanced
by  the  presence  of  a  resonant  state  in  the  barrier  material.
This  resonant  state  allows  the  electrons  to  tunnel  through
the barrier more easily, resulting in a peak current that occurs
when  the  energy  of  the  incoming  electrons  matches  the
energy  of  the  resonant  state.  The  physics  of  a  RTD  can  be
described  by  the  resonant  tunneling  mechanism,  which
involves  the  coupling  of  two  resonant  states  in  the  barrier
material.  When  an  electron  enters  the  RTD,  it  encounters  the
first  resonant  state  and  tunnels  through  the  barrier,  entering
the  quantum-well  region  of  the  device.  The  electron  then

encounters  the  second  resonant  state  and  tunnels  through
the second barrier, exiting the device.

RTD  typically  consists  of  a  quantum  well  (made  from  a
semiconductor  having  a  smaller  bandgap)  that  is  sand-
wiched between two potential barriers (made from a semicon-
ductor with a larger bandgap). This means that the basic con-
figuration  of  an  RTD  is  a  double-barrier  quantum-well
(DBQW)  structure.  When  the  two-terminal  RTD  device  is
biased,  electrons  having  lower  kinetic  energy  than  the  barri-
ers  may  tunnel  through  the  DBQW  structure.  The  possibility
of  electrons  tunneling  through  the  barriers  is  defined  by  the
transmission  coefficient.  At  the  resonant  state,  the  transmis-
sion  coefficient  is  close  to  unity.  As  the  transmission  coeffi-
cient of electrons tunneling through the DBQW changes with
the  bias  voltage,  the  current–voltage  (I–V) characteristic  of
the  RTD  device  exhibits  negative  differential  resistance
(NDR)[3, 12−14].  The  energy  band  diagram  of  a  typical  double-
barrier  RTD  structure  and  the  corresponding I–V characteris-
tics  are  shown  in Figs.  1 and 2,  respectively,  where Ec is  the
conduction  band  energy, Ef is  the  Fermi  energy,  and E1 and
E2 are the quantization energies; Ip, Iv, Vp, and Vv are the respec-
tive  peak  and  valley  current  and  voltages. Fig.  1(a)  is  the
band  diagram  with  no  external  bias;  no  current  flows  in  this
condition  and  the  quantized  states E1 and E2 inside  the  well
are  larger  than  the  Fermi  energy Ef.  At  small  bias  voltage
(Fig.  1(b)),  some  current  starts  flowing  through  the  device  as
the electrons gain sufficient energy to overcome the barriers.
On  further  increasing  the  bias  voltage  and  when  the  elec-
tron  energy  coincides  with  the  quantized  state  energy E1

(Fig. 1(c)),  resonant tunneling occurs. At resonance (i.e.,  when
the energy levels are equal), there will be more electrons flow-
ing through the  barriers  and this  will  result  in  a  peak  current
Ip.  If  the  bias  voltage  is  increased  further,  and  first  resonant
energy  falls  below  the  conduction  band  offset  (Fig.  1(d)),
there  will  be  a  sudden  drop  in  current  (due  to  the  off-reso-
nance condition) resulting in an NDR regime. The current will
continue to drop on further  voltage increment (Fig.  1(e))  and
will  again  start  rising  with  increasing  voltage  when  the  sec-
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ond  resonant  energy  level  falls  below  the  Fermi  level  energy
(Fig. 1(f)).

From Fig. 2, it can be seen that the current–voltage charac-
teristics  of  an  RTD  are  highly  nonlinear,  with  a  NDR  region
occurring  at  the  peak  current.  This  NDR  region  is  due  to  the
resonant  tunneling  mechanism,  where  a  small  change  in  the
bias  voltage  can  cause  a  large  change  in  the  current  flowing
through the device.

RTDs  have  been  realized  using  various  semiconductor
materials and/or alloy systems, such as group IV (silicon (Si), sili-
con–germanium  (Si–Ge)),  and Ⅲ–V  compound  semiconduc-
tors  (gallium  arsenide  (GaAs),  indium  phosphide  (InP),  gal-
lium  phosphide  (GaP),  gallium  nitride  (GaN)).  These  material
systems differ in properties;  thus, the choice of material plays
a  crucial  role  in  the  formation  of  good  quality  devices.  Sili-
con-based devices are cheap, robust, and easy to process. How-
ever,  due to their  lower  electron mobility,  they operate more
slowly than their Ⅲ–V counterparts.  In addition,  a wide band
gap enables Ⅲ–V based devices to operate at higher tempera-
tures and produce lower thermal  noise at  room temperature.
A list of the properties of these material systems at room tem-
perature[15, 16] is given in Table 1.

Among the RTDs based on Ⅲ–V compound semiconduc-
tor  material  system,  GaAs  (direct  bandgap  material)  het-
erostructures  were  found  to  be  the  most  prevalent  in  the
early days owing to its high electron mobility. These RTDs con-

sist of a GaAs well sandwiched between AlAs or AlGaAs barri-
ers.  The  advantage  of  using  this  material  system  is  that  AlAs
and AlGaAs are lattice matched with GaAs, and thus have less
material stress. However, the barrier height is low in this mate-
rial  system.  This  will  result  in  high  thermionic  emission  cur-
rent,  and  as  a  result  will  be  responsible  for  high  valley  cur-
rent  at  room  temperature.  The  electron  effective  mass  for
GaAs/AlGaAs  RTDs  is  high,  which  reduces  the  current  elec-
tron  mobility  and  ultimately  results  in  a  decrease  in  current

 

Fig. 1. (Color online) Energy band diagram of a typical double-barrier
RTD structure.

 

Fig.  2. Corresponding I–V characteristics  of  a  typical  double-barrier
RTD structure.

 

Table 1.   Material properties for different semiconductors at room temperature.

Material Lattice constant
(Ǻ)

Electron mobility
(cm2/(V·s))

Relative dielectric
constant

Energy bandgap
(eV)

Electron effective
mass (m0)

Si 5.43095 1500 11.9 1.12 (indirect) l1: 0.98
t: 0.19

Ge 5.64613 3900 16.0 0.66 (indirect) l: 1.64
t: 0.082

GaAs 5.6533 8500 13.1 1.424 (direct) 0.063
AlAs 5.6605 180 10.1 2.36 (indirect) 0.11
AlxGa1-xAs 5.6533 +

0.0078 x
8 × 103 – 2.2 × 104x +
104x2

(for 0 < x < 0.45);
–255 + 1160x – 720x2

(for 0.45 < x < 1)

11.96
(when x = 0.33)

1.42–2.36
(direct when x < 0.4)

0.063 + 0.083x
(for 0 < x < 0.45)

GaP 5.4512 110 11.1 2.26 (indirect) 0.82
GaN a = 3.189

c = 5.182
400 10.4 3.44 (direct) 0.27

InP 5.8686 4600 12.6 1.35 (direct) 0.077
1where, electron rest mass (m0) = 9.11 × 10−31 kg; l: longitudinal; t: transverse.

 

Fig. 3. (Color online) Conduction (blue square) and valence band (red
dot) offsets for AlxGa1−xAs/GaAs interface with varying aluminum con-
centration.  (Reprinted  with  permission  from  Ref.  [17].  ©2013  Ameri-
can Institute of Physics.)
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density.  In  addition,  these  RTDs  suffer  from  low  conduction
band  offset  (as  depicted  in Fig.  3)  which  produces  high  leak-
age currents at the upper resonant level.

The  experimental I–V characteristics  of  a  double-barrier
RTD  structure  were  first  observed  in  1974[3] and  were  based
on GaAs material technology. Since then, there has been exten-
sive  research  on  the  technology,  new  material  systems  have
been  developed,  and  material  growth  has  been  used  to
obtain  high  quality  RTD  devices.  Key  technologies  to  obtain
high  quality  RTDs  include  fabrication  technology  and  struc-
tural  design.  Most  of  the  reported  material  growth  tech-
niques to obtain high-precision ultrathin epi-layers use molecu-
lar  beam  epitaxy  (MBE),  while  only  a  few  use  metal  organic
chemical  vapor  deposition  (MOCVD).  This  is  due  to  the  fact
that  MBE  is  more  precise  and  this  gives  more  control  of  the
deposited  film  thickness,  alloy  composition,  and  doping
level[18−21].

In  this  review  article,  I  will  cover  the  development  of
GaAs  RTD  technology  featuring  significant  accomplishments
that  have  been  achieved  in  terms  of  device  design,  fabrica-
tion, characterization, and applications to date. I will also give
a research outlook on future developments with this technol-
ogy. The organization of the article is as follows. Section 2 dis-
cusses different epi-structures used in GaAs-based RTDs, fabri-
cation  technology  and  device  performances.  Section  3  deals
with the RTD applications. Finally, future perspectives and con-
cluding remarks are given in Section 4. 

2.  RTD epi-structure: Device abrication and
performance

The  simplest  RTD  epi-structure  consists  of  a  quantum
well  sandwiched  between  double  barriers:  A  top  electrode
and  a  bottom  electrode[3].  The  dimension  of  epitaxial  layers
including  barrier  thickness,  quantum  well,  and  spacer  thick-
ness  needs  to  be  varied  to  optimize  the  device  performance,
which depends on figure of merits, namely peak to valley cur-
rent ratio (PVCR) and peak current density (Jp). To have a high
PVCR,  the  peak  current  (Ip)  needs  to  be  as  high  as  possible,
while the valley current (Iv) should be as low as possible. How-
ever,  if  the  peak  current  is  too  high,  then  it  will  cause  high
power  dissipation.  Consequently,  a  low  peak  voltage  RTD
needs  to  be  designed  in  order  to  equilibrate  this.  Peak  cur-
rent  density  is  inversely  related  to  the  barrier  thickness—as
barrier thickness decreases, it enlarges the transmission proba-
bility,  which  finally  results  in  an  increment  of  current
density[22].  The  distance  between  the  adjacent  resonant
energy  levels  will  increase  if  the  quantum  well  is  made  nar-
row,  so  the leakage current  components  through the second
resonant  energy level  will  reduce,  which ultimately  enhances
the PVCR[23−26].  The addition of  a  spacer  layer  in the RTD epi-
structure  prevents  dopant  diffusion  to  the  subsequent  layer
in  the  growth  process.  However,  a  thick  spacer  layer  widens
the depletion region,  which will  affect  high-frequency device
performance by increasing the intrinsic delay time. It has also
been  found  that  introducing  a  spacer  will  result  in  an
increase  in  the  operating  voltage.  Furthermore,  in  specific
designs,  it  has  been  shown  that  introducing  doping  in  the
active region can boost the performance of the device by alter-
ing the energy band structure and enhancing its current–volt-
age  properties.  In  particular,  doping  can  affect  the  tunneling

current that flows through the RTD's active region[27−30].
High-frequency RTD device fabrication can be carried out

by using one of the three processes, namely, a) Polyimide pro-
cess[31],  b)  Air-bridge  process[32, 33],  and  c)  BCB  (benzocy-
clobutene) process[34]. Processing steps in general involve sam-
ple  cleaning,  lithography,  etching,  and  metallization.  In  the
polyimide RTD process,  the first  fabrication step is  the forma-
tion  of  top  metal  contact.  Next  is  the  top  mesa  step,  which
will  etch  till  the  emitter  layer  (using  proper  etching  solution
as  depicted  in Table  3).  The  bottom  metal  contact  is
deposited  then  following  the  same  procedure  as  the  top
metal. The next step of fabrication is the bottom mesa, which
etches  till  the  substrate.  This  step  isolates  the  active  layers
from  the  surrounding  areas.  The  passivation  step  is  done  by
using a polyimide (e.g.,  PI  2545),  and thereafter the via-open-
ing  step  is  to  be  carried  out  in  order  to  enable  a  connection
between  top  contact  and  bond  pads.  Finally,  metal  bond
pads are formed, which completes the single RTD device fabri-
cation  process. Figs.  4 and 5 show  the  RTD  fabrication  flow
by using polyimide process and SEM (scanning electron micro-
scope) image after fabrication, respectively.

The  via-opening  step,  although  crucial,  is  a  critical  pro-
cess  of  RTD  device  fabrication,  where  a  slight  misalignment
of  mask  and  improper  etch  (underetch/overetch)  may  even
result  in  device  failure.  In  addition,  creating  a  via-hole
becomes  very  challenging  when  mesa  size  is  of  nanoscale
dimension.  This  can  be  overcome  with  the  air-bridge
approach  or  by  BCB  process.  RTD  fabrication  with  air-bridge
approach  starts  with  top  metal  contact  formation  and  mesa
definition  (which  etches  down  to  the  emitter  layer).  Follow-
ing  this  is  a  second  etch  step  similar  to  the  mesa  step  which
results in a suspended air-bridge structure. Finally, there is bot-
tom  contact  formation  and  bond  pad  establishment  step.
Thus,  the  air-bridge  builds  a  connection  between  top  metal
and  bond  pad,  thereby  eliminating  the  critical  via-opening
step  of  polyimide  process.  The  SEM  image  and  actual  micro-
graph of a GaAs/AlAs RTD device fabricated by the air-bridge
process as reported by Zawawi[32] is shown in Fig. 6.

Fabrication  of  RTD  using  BCB  process  starts  with  the  top
metal  formation,  top  mesa,  bottom  metal  formation,  bottom
mesa  step,  and  passivation  similar  to  the  polyimide  process.
However,  after  this  passivation,  there  is  no  via-opening.  In
this case, BCB etch back process to etch till top metal is under-
taken  and  then  bottom  contact  opening  is  done;  finally,  the
bond pads  are  established.  The cross-sectional  view after  the
bond pad step is shown in Fig. 7.

A  suitable  ohmic  contact  metallization  scheme  needs  to
be chosen for  the fabrication of  RTD,  which will  be  thermally
stable  and  have  low  contact  resistance  (Rc).  These  two  are
very  important  criteria  for  the  performance  and  reliability  of
any  semiconductor  device,  including  the  RTD.  Ohmic  con-
tacts  in  general  provide  a  link  between  external  circuit  and
active regions of semiconductor devices. The choice of ohmic
contact  metallization  becomes  even  more  critical  for  devices
with  dimensions  in  the  sub-micrometer  range.  Generally,
ohmic  contacts  for  GaAs are  deposited by either  evaporation
or sputtering techniques, and the contact resistances are mea-
sured  by  using  transmission  line  model  (TLM). Table  2 shows
the  state-of-the-art  methods  and  materials  for  obtaining
ohmic contacts to GaAs.

Optical  lithography using chrome/glass  mask is  the most
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commonly  used  approach  to  fabricate  a  GaAs-based  RTD
device. This method is inexpensive, and provides adequate res-
olution  and  high  throughput  when  compared  to  the  well-
known maskless lithography technique—electron beam lithog-

raphy.  As  device  manufacturing  using  photolithography
often  requires  wet  etching,  the  next  focus  would  be  on  the
chemical wet etching solution. Etchant composition, concentra-
tion,  and  processing  temperature  are  the  crucial  factors  that

 

Fig. 4. (Color online) RTD device fabrication flow by polyimide process: (a) top metal deposition; (b) top mesa; (c) bottom metal deposition; (d) bot-
tom mesa; (e) passivation and via-opening; and (f) bond pad formation.

 

Fig.  5. SEM  image  of  a  fabricated  RTD  device  with  3  ×  3 μm2 mesa
area.  (Reprinted  with  permission  from  Ref.  [31].  ©2014  University  of
Glasgow.)

 

Fig.  6. (Color  online)  (a)  SEM  image  and  (b)  actual  micrograph  of  a
GaAs/AlAs  RTD  device  fabricated  by  air-bridge  process.  (Reprinted
with permission from Ref. [32]. ©2017 Elsevier.)
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affect  the  etching  profile. Table  3 illustrates  the  state-of-the-
art wet etchants for GaAs material around room temperature.
The etchants are based on ammonium hydroxide,  hydrochlo-
ric-based,  sulfuric-based,  orthophosphoric,  or  citric  acid-
based  etching  solutions.  Although  the  wet  etch  method  has
the advantage of being low cost, it causes low damage to sur-
face,  and  provides  high  selectivity,  a  dry  etch  method  is  also
required  where  the  main  concern  is  to  obtain  high  resolu-
tion and vertical sidewalls. Table 4 provides details of dry etch-
ing for GaAs material.

There are intense research efforts  to optimize the perfor-
mance  of  RTDs  to  be  utilized  as  building  blocks  of  electron-
ics,  as  well  as  optical  devices.  Presently,  fabrication  demands
maximum  performance  with  minimum  device  size.  However,
scaling  down  device  size  increases  the  on-chip  device  den-
sity  and  decreases  the  capacitance,  which  ultimately  lowers
the  cut-off  operating  frequency[63]. Table  5 shows  the  state-
of-the-art  performance of  GaAs-based RTDs  in  terms of  PVCR
and  peak  current  density  at  room  temperature.  Generally,  a
parameter analyzer is used to measure the RTD DC characteris-
tics,  where  the bond pads  are  connected to  the terminals  on
the parameter analyzer through two DC probes, and measure-

ment  software  is  used  to  manage  measurement  and  enable
data collection. It can be observed from Table 5 that a proper
choice of  material  system, thereby adjusting the doping con-
centration of contact regions, will help to improve the perfor-
mance of RTD structures. The dimensions of the individual lay-
ers forming the RTD device (i.e., barrier, well and spacer thick-
nesses)  also  play  important  role  in  performance  improve-
ment. 

3.  Application

Resonant tunneling diodes exhibit a wide variety of appli-
cations  in  electronics  and  communication  systems,  including
high-speed  digital  circuits,  microwave  oscillators,  terahertz
detectors, and optical applications (Table 6). The unique prop-
erties of RTDs, such as their high-frequency response and low
power  consumption,  make  them  an  attractive  choice  for
these applications. RTDs are known to be the fastest semicon-
ductor-based electronic  devices  to  date[81, 82].  Tunneling time
and device capacitance are very small in these devices, which
makes  their  operation  frequency  and  switching  speed  the
fastest  when  compared  to  other  semiconductor-based  elec-
tronic  devices,  and are  thus  used in  high-frequency  electron-
ics.  With  a  higher  peak  current  density,  RTDs  will  have  faster
switching speed, provided that the PVCR is kept high and the
device  capacitance  is  kept  low.  RTD  can  potentially  operate
in the terahertz (THz) regime because it is only limited by tun-
neling time of  the electrons,  which is  in the order of  picosec-
onds.  The  NDR  allows  fast  oscillations,  so  oscillators  can  be
made  that  will  oscillate  at  THz.  This  NDR  also  allows  RTD  to
be  applicable  in  digital  logic  circuits[83].  One  can  make  the
RTD oscillate at very high frequency with a small device capaci-
tance  and  small  intrinsic  delay.  In  1984,  Sollner[84] reported
the  first  demonstration  of  GaAs/AlGaAs  RTD  oscillator  at  an
oscillation frequency of 18 GHz at 200 K temperature. Oscilla-
tors  operating  at  room  temperature  were  reported  later  by
Brown[64−66] for  GaAs/AlAs  RTDs,  and  could  work  up  to  420
GHz[66].  Operation  of  the  RTD  as  both  oscillator  and  detector
is possible by changing the operation bias voltage, and there-

 

Table 2.   Ohmic contact formation on GaAs substrate.

Metal scheme Deposition method Anneal temperature
(°C)

Anneal
time (s)

Specific contact
resistance (Ω·cm2)

Ref.

Pd/Ge/Pd EB-PVD 430 15 3.2 × 10–4 [35]
Pd/Ge/Ti/Pt EB-PVD 430 15 8 × 10–7 [35]
Pd/Ge/Pd/Ti/Au EB-PVD 415 15 4.3 × 10–7 [35]
Pd/Sn Resistance-heating

evaporation
360 1800 3.26 × 10–5 [36]

Pd/Ge/Ti/Au EB-PVD 340 20 2.8 × 10–6 [37]
Pd/Ge/Ti/Pt EB-PVD 380–450 20 (2.4–5.3) × 10–6 [38]
Pd/Ge/Au/Pd/Au EB-PVD 400 30 2 × 10–6 [39]
Pd/Ge/Au/Pd/Au EB-PVD 320 initially, then 400 20, then 60 2 × 10–6 [40]
Au/Ge/Ni/Au EB-PVD 400 60 5.6 × 10–6 [41]
Ge/Cu EB-PVD 400 1800 7 × 10–7 [42]
Ge/Au/Ni/Ta/Au Magnetron sputtering 450 – 7 × 10–7 [43]
WSi/Cu RF sputtering 400 5 6.3 × 10–6 [44]
Au/Ti/W/Ti Sputtering and EB-PVD 400 30 5.5 × 10–6 [45]
In IAD 375 60 3 × 10–6 [46]

where, EB-PVD: electron beam physical vapor deposition; RF: radio frequency; resistance-heating evaporation: resistive evaporation; IAD:
ion-assisted deposition.

 

Fig.  7. (Color  online)  Cross  section  after  bond  pad  establishment  for
BCB process of RTD fabrication.
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Table 3.   Wet etching solution for GaAs material around room tempera-
ture.

Etching
solution

Etchant ratio Temperature
(°C)

Etch rate
(nm/min)

Ref.

NH4OH : H2O2 :
H2O

1 : 1 : 25 25 924 [47]
1 : 1 : 50 594
1 : 2 : 50 861
2 : 1 : 50 993
1 : 1 : 250 177
1 : 1 : 500 54
40 : 4 : 1 Room temp. 202.6 [48]
40 : 10 : 0 509.1
40 : 20 : 0 1385
1 : 1 : 5 1890
1 : 10 : 500 25
10 : 1 : 500 18
1 : 10 : 5000 6.1
1 : 1 : 5000 1.65
1 : 10 : 3000 12

HCl : H3PO4 :
H2O

1 : 10 : 1 20 10 [49]

HCl : CH3COOH
: H2O

1 : 10 : 1 20 60 [49]

HCl : CH3COOH
: H2O2

1 : 20 : 0 20 10 [50]
1 : 20 : 1 50
1 : 20 : 2 120
1 : 20 : 3 270
1 : 2 : 1 440
1 : 5 : 1 250
1 : 10 : 1 120
1 : 20 : 1 50
1 : 30 : 1 30
1 : 40 : 1 15

H3PO4 : H2O2 :
H2O

3 : 1 : 50 Room temp. 60 [32]
3 : 1 : 75 Room temp. 72 [51]
1 : 1 : 25 25 259.8 [47]
1 : 1 : 50 130.8
1 : 2 : 50 244.8
2 : 1 : 50 129
1 : 1 : 250 40.8
1 : 1 : 500 7.8

H3PO4 : HNO3 3 : 1 Room temp. 1125 [48]
H2SO4 : H2O2 4 : 1 Room temp. 1073 [48]
H2SO4 : H2O2 :
H2O

4 : 3 : 3 Room temp. 9000 [52]
1 : 1 : 25 25 234 [47]
1 : 1 : 50 90.6
1 : 2 : 50 202.8
2 : 1 : 50 184.8
1 : 1 : 250 27
1 : 1 : 500 27.6

C6H8O7 : H2O2 2 : 1 20 30 [53]
3 : 1 45
4 : 1 45
5 : 1 42
7 : 1 33
10 : 1 21
1 : 1 18 5 [54]
1 : 3 7
1 : 5 200
1 : 10 210
1 : 15 150
1 : 25 90
1 : 1 21 5.8 [55]
2 : 1 570

Table 3. (Continued)

Etching
solution

Etchant ratio Temperature
(°C)

Etch rate
(nm/min)

Ref.

HCl : HNO3 3 : 1 Room temp. 477 [48]
HCl : HNO3 :
H2O

1 : 1 : 1 Room temp. 2277 [48]

HCl : H2O2 : H2O 1 : 10 : 500 Room temp. 9.27 [48]
80 : 4 : 1 185
1 : 10 : 5000 8.21

HF : HNO3 : H2O 1 : 1 : 1 Room temp. 122693 [48]

 

Table 4.   Dry etching details for GaAs material.

Inductively coupled plasma etching
Gas
system

Flow rate
(sccm)

RF
power
(W)

ICP
power
(W)

Chamber
pressure
(mTorr)

Etch
rate
(μm/
min)

Ref.

BCl3/Cl2 30/80 80 600 10 2.6 [56]
800 4.5
1000 5.4
1200 6.2
1500 6.4

600 5 3.2
10 2.8
15 1.8
20 1.2

150 10 3.6
200 4.0
300 4.4

BCl3/Cl2 3 : 4 (ratio) 90 950 40 ~4.0 [57]
BCl3/Cl2 4 : 1 RF : ICP = 1 : 8 10 3.64 [58]

2 : 1 3.6
2.5 : 1 2.38
6 : 1 2.37
8 : 1 2.1

BCl3/Cl2/
Ar

4 : 1 : 5 RF : ICP = 1 : 8 10 2.38 [58]
2.5 : 1 : 5 2.13
6 : 1 : 5 2.0

BCl3/Cl2/
Ar/N2

6 : 1 : 5 : 2 RF : ICP = 1 : 8 10 3.84 [58]
6 : 1 : 5 : 2.5 4.0
6 : 1 : 5 : 3 4.0
3 : 1 : 5 : 3 2.5
20 : 1 : 5 : 3 1.8

5 1.14
20 2.36
25 3.6
30 3.7

20 : 1:5 : 5 30 5.56
20 4.1

20 : 1 : 10 : 3 20 2.8
20 : 1 : 20 : 3 3.0
20 : 1 : 30 : 3 2.5
20 : 1 : 50 : 3 2.23

BCl3/Cl2/
N2

20 : 1 : 3 RF : ICP = 1 : 8 10 1.92 [58]

Cl2/Ar 13/20 80 250 7.5 1.37 [59]
150 1.6
200 1.82

Cl2/Ar/
SiCl4

13/20/5 150 250 7.5 1.65
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fore RTDs can be used in realization of compact and low-cost
transceivers. Research has also been done for RTD photodetec-
tors  (PD)  on  GaAs  substrates  (GaAs/AlGaAs  RTD  PD)  by  the
inclusion  of  quaternary  absorption  layer  like  GaInNAs,  which
is  pseudomorphically  grown  on  GaAs  substrates[85].  In  order
to  enable  wavelength-selective  detection  and  enhance  the
quantum  efficiency,  RTDs  are  often  integrated  with  dis-
tributed Bragg reflector (DBR) cavity[86, 87]. Sensitivity and wave-
length selectivity depends on the number of DBR mirror pairs
used—increasing  the  mirror  pairs  enhances  both  sensitivity
and  wavelength  selectivity.  The  detection  efficiency  can  also
be  enhanced  with  integrated  waveguide  geometry,  as
reported  by  Pfenning[87],  where  the  waveguide  design  was
for  a  wavelength  of  940  nm.  Effort  has  also  been  made  to
make use of RTDs as pressure sensors[88], mixers[77], and in trig-
ger circuits[79]. 

4.  Conclusions and future perspectives

RTDs have become a research focus due to their NDR cur-
rent–voltage  characteristics,  structural  simplicity,  low  fabrica-
tion  cost,  inherent  high  speed,  design  flexibility,  versatile  cir-
cuit functionality, and ability to operate at room temperature.
NDR  is  the  reason  why  RTDs  have  found  potential  for  high-
speed  and  high  functionality  operations,  thus  gaining  the
attention to researchers working in this field. Researchers and
scientists  from  different  parts  of  the  world  have  been  work-
ing with RTDs using GaAs material system to make them appli-
cable  for  a  wide  range  of  applications.  The  advent  of  various
advanced  epitaxial  growth  techniques  and  fabrication  meth-
ods makes it possible to improve the performance and allows
them  to  be  applied  in  many  areas.  However,  there  is  much
research space for the development of this GaAs RTD technol-

ogy.  In  particular,  much  optimization  is  required  to  make  it
potential  for  real-world  applications,  especially  in  terahertz
and  neuromorphic  applications.  In  recent  years,  there  has
been a trend of developing RTD devices in brain-inspired opti-
cal  memories  and  neuromorphic  computing.  Neuromorphic
electronic  circuits  that  are  based  on  optoelectronic  devices
are formed by RTDs to enable electro-optic neuromorphic func-
tions.  It  is  highly  expected  that  in  the  near  future  the
research focus would be on the implementation of neuromor-
phic applications using GaAs-based RTDs.
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